Parameters of HOM for Tevatron Cavities

Prepared by V. Lebedev from a handwritten note of Ding Sun (x.8016) at Jan.25-27, 1995

There are 8 cavities all together combined so that four of them accelerate protons and other four accelerate antiprotons

Parameters of HOM of a cavity

Mode #	f ₀ [MHz]	Q	$R/Q[\Omega]$	Notes
	Resonant			
	Frequency			
1	53.11375*	6523	109.60	
Δ 2	56.50625	3620	18.81	(need to be remeasured)
3	158.2325	6060	11.68	
4	310.6775	15923	7.97	
5	424.24875	6394	1.28	
6	439.7725	13728	5.23	
Δ 7	498.4975	8326	< 0.01	
8	559.4825	13928	6.73	
Δ 9	583.39375	8986	0.11	
Δ 10	592.39375	10402	0.21	
Δ 11	664.7125	13763	0.35	
12	748.1800	13356	10.90	
13	768.030	16191	2.47	

^{*} Nominal RF frequency is 53.105

 Δ : phase shifts are $< 1^{\circ}$ (limit of measure)

$$\frac{R}{Q} = \frac{1}{\boldsymbol{p}a^3k\boldsymbol{e}_b} \frac{\left[\int \left(\frac{\Delta f}{f} \right)^{1/2} dL \right]^2}{2\boldsymbol{w}_0} = \frac{1}{8\boldsymbol{p}^2 a^3k\boldsymbol{e}_b f_0 Q} \left[\int (\tan \Delta \boldsymbol{f})^{1/2} dL \right]^2$$

a = 0.375" - radius of bead,

$$k = \frac{\boldsymbol{e} - 1}{\boldsymbol{e} + 1} ,$$

 $\Delta \varphi$ - phase shift during a bead pull $\epsilon_0 = \! 8.85 \! \cdot \! 10^{\text{-}12}$

Note: Bead is relatively large (compared with gap), results are not very accurate.